1,110 research outputs found

    Perceptions of Familial Risk in those Seeking a Genetic Risk Assessment for Alzheimer’s Disease

    Full text link
    Perceived risk is a complex concept that influences the genetic counseling process and can affect client coping and behavior. Although the association between family history and risk perception is well recognized in the literature, no studies have explored this relationship specifically in those seeking genetic susceptibility testing for a common chronic condition. REVEAL is a randomized trial assessing the impact of APOE disclosure and genetic risk assessment for Alzheimer’s disease (AD). Using baseline REVEAL data, we hypothesized that there would be a significant association between the degree of AD family history and risk perception of AD, and that this relationship would be stronger in those who believed that genetics is a very important AD risk factor. In our sample of 293 participants, we found that a higher self‐perceived risk of AD was associated with strength of family history of AD (p < 0.001), belief in genetics as an important AD risk factor (p < 0.001), being female (p < 0.001) and being Caucasian (p = 0.02). These results are the first to demonstrate the association between family history and risk perception in persons volunteering for genetic susceptibility testing for a common complex disease.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147109/1/jgc40130.pd

    Integromic analysis of genetic variation and gene expression identifies networks for cardiovascular disease phenotypes

    Get PDF
    Cataloged from PDF version of article.Background-Cardiovascular disease (CVD) reflects a highly coordinated complex of traits. Although genome-wide association studies have reported numerous single nucleotide polymorphisms (SNPs) to be associated with CVD, the role of most of these variants in disease processes remains unknown. Methods and Results-We built a CVD network using 1512 SNPs associated with 21 CVD traits in genome-wide association studies (at P <= 5x10(-8)) and cross-linked different traits by virtue of their shared SNP associations. We then explored whole blood gene expression in relation to these SNPs in 5257 participants in the Framingham Heart Study. At a false discovery rate <0.05, we identified 370 cis-expression quantitative trait loci (eQTLs; SNPs associated with altered expression of nearby genes) and 44 trans-eQTLs (SNPs associated with altered expression of remote genes). The eQTL network revealed 13 CVD-related modules. Searching for association of eQTL genes with CVD risk factors (lipids, blood pressure, fasting blood glucose, and body mass index) in the same individuals, we found examples in which the expression of eQTL genes was significantly associated with these CVD phenotypes. In addition, mediation tests suggested that a subset of SNPs previously associated with CVD phenotypes in genome-wide association studies may exert their function by altering expression of eQTL genes (eg, LDLR and PCSK7), which in turn may promote interindividual variation in phenotypes. Conclusions-Using a network approach to analyze CVD traits, we identified complex networks of SNP-phenotype and SNP-transcript connections. Integrating the CVD network with phenotypic data, we identified biological pathways that may provide insights into potential drug targets for treatment or prevention of CVD.(Circulation. 2015;131:536-549. DOI: 10.1161/CIRCULATIONAHA.114.010696.

    Performance of random forest when SNPs are in linkage disequilibrium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Single nucleotide polymorphisms (SNPs) may be correlated due to linkage disequilibrium (LD). Association studies look for both direct and indirect associations with disease loci. In a Random Forest (RF) analysis, correlation between a true risk SNP and SNPs in LD may lead to diminished variable importance for the true risk SNP. One approach to address this problem is to select SNPs in linkage equilibrium (LE) for analysis. Here, we explore alternative methods for dealing with SNPs in LD: change the tree-building algorithm by building each tree in an RF only with SNPs in LE, modify the importance measure (IM), and use haplotypes instead of SNPs to build a RF.</p> <p>Results</p> <p>We evaluated the performance of our alternative methods by simulation of a spectrum of complex genetics models. When a haplotype rather than an individual SNP is the risk factor, we find that the original Random Forest method performed on SNPs provides good performance. When individual, genotyped SNPs are the risk factors, we find that the stronger the genetic effect, the stronger the effect LD has on the performance of the original RF. A revised importance measure used with the original RF is relatively robust to LD among SNPs; this revised importance measure used with the revised RF is sometimes inflated. Overall, we find that the revised importance measure used with the original RF is the best choice when the genetic model and the number of SNPs in LD with risk SNPs are unknown. For the haplotype-based method, under a multiplicative heterogeneity model, we observed a decrease in the performance of RF with increasing LD among the SNPs in the haplotype.</p> <p>Conclusion</p> <p>Our results suggest that by strategically revising the Random Forest method tree-building or importance measure calculation, power can increase when LD exists between SNPs. We conclude that the revised Random Forest method performed on SNPs offers an advantage of not requiring genotype phase, making it a viable tool for use in the context of thousands of SNPs, such as candidate gene studies and follow-up of top candidates from genome wide association studies.</p

    Data abstractions for decision tree induction

    Get PDF
    AbstractWhen descriptions of data values in a database are too concrete or too detailed, the computational complexity needed to discover useful knowledge from the database will be generally increased. Furthermore, discovered knowledge tends to become complicated. A notion of data abstraction seems useful to resolve this kind of problems, as we obtain a smaller and more general database after the abstraction, from which we can quickly extract more abstract knowledge that is expected to be easier to understand. In general, however, since there exist several possible abstractions, we have to carefully select one according to which the original database is generalized. An inadequate selection would make the accuracy of extracted knowledge worse.From this point of view, we propose in this paper a method of selecting an appropriate abstraction from possible ones, assuming that our task is to construct a decision tree from a relational database. Suppose that, for each attribute in a relational database, we have a class of possible abstractions for the attribute values. As an appropriate abstraction for each attribute, we prefer an abstraction such that, even after the abstraction, the distribution of target classes necessary to perform our classification task can be preserved within an acceptable error range given by user.By the selected abstractions, the original database can be transformed into a small generalized database written in abstract values. Therefore, it would be expected that, from the generalized database, we can construct a decision tree whose size is much smaller than one constructed from the original database. Furthermore, such a size reduction can be justified under some theoretical assumptions. The appropriateness of abstraction is precisely defined in terms of the standard information theory. Therefore, we call our abstraction framework Information Theoretical Abstraction.We show some experimental results obtained by a system ITA that is an implementation of our abstraction method. From those results, it is verified that our method is very effective in reducing the size of detected decision tree without making classification errors so worse

    Genotype-by-Sex Interaction in the Regulation of High-Density Lipoprotein: TheFramingham Heart Study

    Get PDF
    Low levels of high-density lipoprotein (HDL) are widely documented as a risk factor for cardiovascular disease (CVD). Furthermore, there is marked sexual dimorphism in both HDL levels and the prevalence of CVD. However, the extent to which genetic factors contribute to such dimorphism has been largely unexplored. We examined the evidence for genotypeby- sex effects on HDL in a longitudinal sample of 1,562 participants from 330 families in the Framingham Heart Study at three times points corresponding approximately to 1971-1974, 1980-1983, and 1988-1991. Using a variance component method, we conducted a genome scan of HDL at each time point in males and females, separately and combined, and tested for genotype-by-sex interaction at a quantitative trait locus (QTL) at each time point. Consistent findings were noted only for females on chromosome 2 near marker D2S1328, with adjusted LOD scores of 2.6, 2.2, and 2.1 across the three time points, respectively. In males suggestive linkage was detected on chromosome 16 near marker D16S3396 at the second time point and on chromosome 18 near marker D18S851 at the third time point (adjusted LOD = 2.2 and 2.4, respectively). Although the heritability of HDL is similar in males and females, sex appears to exert a substantial effect on the QTL-specific variance of HDL. When genotype-by-sex interactions exist and are not modeled, the power to detect linkage is reduced; thus our results may explain in part the paucity of significant linkage findings for HDL

    Deep-coverage whole genome sequences and blood lipids among 16,324 individuals.

    Get PDF
    Large-scale deep-coverage whole-genome sequencing (WGS) is now feasible and offers potential advantages for locus discovery. We perform WGS in 16,324 participants from four ancestries at mean depth &gt;29X and analyze genotypes with four quantitative traits-plasma total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol, and triglycerides. Common variant association yields known loci except for few variants previously poorly imputed. Rare coding variant association yields known Mendelian dyslipidemia genes but rare non-coding variant association detects no signals. A high 2M-SNP LDL-C polygenic score (top 5th percentile) confers similar effect size to a monogenic mutation (~30 mg/dl higher for each); however, among those with severe hypercholesterolemia, 23% have a high polygenic score and only 2% carry a monogenic mutation. At these sample sizes and for these phenotypes, the incremental value of WGS for discovery is limited but WGS permits simultaneous assessment of monogenic and polygenic models to severe hypercholesterolemia

    Framingham Heart Study 100K project: genome-wide associations for cardiovascular disease outcomes

    Get PDF
    BACKGROUND:Cardiovascular disease (CVD) and its most common manifestations - including coronary heart disease (CHD), stroke, heart failure (HF), and atrial fibrillation (AF) - are major causes of morbidity and mortality. In many industrialized countries, cardiovascular disease (CVD) claims more lives each year than any other disease. Heart disease and stroke are the first and third leading causes of death in the United States. Prior investigations have reported several single gene variants associated with CHD, stroke, HF, and AF. We report a community-based genome-wide association study of major CVD outcomes.METHODS:In 1345 Framingham Heart Study participants from the largest 310 pedigrees (54% women, mean age 33 years at entry), we analyzed associations of 70,987 qualifying SNPs (Affymetrix 100K GeneChip) to four major CVD outcomes: major atherosclerotic CVD (n = 142; myocardial infarction, stroke, CHD death), major CHD (n = 118; myocardial infarction, CHD death), AF (n = 151), and HF (n = 73). Participants free of the condition at entry were included in proportional hazards models. We analyzed model-based deviance residuals using generalized estimating equations to test associations between SNP genotypes and traits in additive genetic models restricted to autosomal SNPs with minor allele frequency [greater than or equal to]0.10, genotype call rate [greater than or equal to]0.80, and Hardy-Weinberg equilibrium p-value [greater than or equal to] 0.001.RESULTS:Six associations yielded p <10-5. The lowest p-values for each CVD trait were as follows: major CVD, rs499818, p = 6.6 x 10-6; major CHD, rs2549513, p = 9.7 x 10-6; AF, rs958546, p = 4.8 x 10-6; HF: rs740363, p = 8.8 x 10-6. Of note, we found associations of a 13 Kb region on chromosome 9p21 with major CVD (p 1.7 - 1.9 x 10-5) and major CHD (p 2.5 - 3.5 x 10-4) that confirm associations with CHD in two recently reported genome-wide association studies. Also, rs10501920 in CNTN5 was associated with AF (p = 9.4 x 10-6) and HF (p = 1.2 x 10-4). Complete results for these phenotypes can be found at the dbgap website http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?id=phs000007.CONCLUSION:No association attained genome-wide significance, but several intriguing findings emerged. Notably, we replicated associations of chromosome 9p21 with major CVD. Additional studies are needed to validate these results. Finding genetic variants associated with CVD may point to novel disease pathways and identify potential targeted preventive therapies

    Drug-gene interactions of antihypertensive medications and risk of incident cardiovascular disease: a pharmacogenomics study from the CHARGE consortium

    Get PDF
    Background Hypertension is a major risk factor for a spectrum of cardiovascular diseases (CVD), including myocardial infarction, sudden death, and stroke. In the US, over 65 million people have high blood pressure and a large proportion of these individuals are prescribed antihypertensive medications. Although large long-term clinical trials conducted in the last several decades have identified a number of effective antihypertensive treatments that reduce the risk of future clinical complications, responses to therapy and protection from cardiovascular events vary among individuals. Methods Using a genome-wide association study among 21,267 participants with pharmaceutically treated hypertension, we explored the hypothesis that genetic variants might influence or modify the effectiveness of common antihypertensive therapies on the risk of major cardiovascular outcomes. The classes of drug treatments included angiotensin-converting enzyme inhibitors, beta-blockers, calcium channel blockers, and diuretics. In the setting of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, each study performed array-based genome-wide genotyping, imputed to HapMap Phase II reference panels, and used additive genetic models in proportional hazards or logistic regression models to evaluate drug-gene interactions for each of four therapeutic drug classes. We used meta-analysis to combine study-specific interaction estimates for approximately 2 million single nucleotide polymorphisms (SNPs) in a discovery analysis among 15,375 European Ancestry participants (3,527 CVD cases) with targeted follow-up in a case-only study of 1,751 European Ancestry GenHAT participants as well as among 4,141 African-Americans (1,267 CVD cases). Results Although drug-SNP interactions were biologically plausible, exposures and outcomes were well measured, and power was sufficient to detect modest interactions, we did not identify any statistically significant interactions from the four antihypertensive therapy meta-analyses (Pinteraction &gt; 5.0×10−8). Similarly, findings were null for meta-analyses restricted to 66 SNPs with significant main effects on coronary artery disease or blood pressure from large published genome-wide association studies (Pinteraction ≥ 0.01). Our results suggest that there are no major pharmacogenetic influences of common SNPs on the relationship between blood pressure medications and the risk of incident CVD
    corecore